Friday, 16 May 2025

Stochastic Meaning Theory 2 Period of Meaning 13th for KARCEVSKIJ Sergej On what there exists confirmation of meaning in word

 Stochastic Meaning Theory 2

 

Period of Meaning

13th for KARCEVSKIJ Sergej

On what there exists confirmation of meaning in word

 

TANAKA Akio

 

1 <σ additive>

Set     X

A family of subset of     M

When M satisfies the next, it is called σ additive.

(i) XØ M

(ii) AM  XAM

(iii) An(n=1, 2, …) n=1 AnM

 

2 <Measurable space>

Set     X

Family of σ additive     M

Pair ( XM ) is called measurable space.

 

3 <Measure space>

Measurable space      ( XM )

Function over M     μ

When μ is satisfies the next, it is called measure.

(i) μ (A)[0,]

(ii) μ (0) = 0

(iii) AnAAm = 0  (nm)

μ (n=1 An) = Σn=1 μ (A)

XM, μ ) is called measure space.

Measure that is 1 by all the measures is called probability measure.

 

4 <Probability space>

Measure space in which all the measures are 1 is called probability space.

Set     Ω

Element of Ω     ω

σ-field      F

Element of F     A

Function over F   P 

Measure ()     probability

Probability space     ( ΩFP ).

 

5 <Borel additive>

Measurable space     ( XM ), ( YN )

Map     XY

Arbitrary AN

f -1 ( A ) = {xN ; f (x)A }M

Map f is called M-N measurable.

A family of subsets of X     U

σ ( U ) = ( M ; M is σ additive that contains U )

σ ( U ) is also notated B ( X ) that is called Borel σ additive.

= [-, +]

Borel σ additive of  is notated B(.

Element of Borel σ additive is called Borel set.

 

6 < M-B(measurable>

Measurable space     ( XM )

Function from X to      f

When f satisfies one of the next, it is called M-B(measurable.

(i) -1 ( [-] )M,  -1 ( [-a ) )M

(ii) -1 ( [ a] )M,  -1 ( (a] )M

 

7 <F-measurable>

When function f : X is M-B(measurable, it is called M-measurable function, that is generally notated F-measurable.

 

8 < Ft+-measurable>

Countable sequence of probability space      ( ΩnFnPn ).

 

9 <Random variable>

Probability space     ( ΩFP )

valued function over Ω     X

When X is Ft+-measurable, X is called random variable.

 

10 <Expectation (Mean)>

Probability space     ( ΩFP )

| X (ω) | is integrable.

Expectation of random variable EX     Ω X(ω)P()

Expectation is also called mean.

 

11 <Covariance>

Random variable     ( X (ω) – EX )2

Variance     Expectation of ( X (ω) – EX )2    

Random Variable     XY

Covariant    cov ( XY ) = E ( XEX ) (Y-EY )    X (ω) and Y (ω) are integrable.

 

12 < Probability distribution >

Random variable     X

Probability     P

Probability distribution function     F (x) = P ( X)

 

13 <Density function>

Probability distribution over R     F x )

Function ρ(x) satisfies the next, it is called density function for F.

b ) - F a ) = bρ(x)dx

 

14 <Gauss distribution>

mRd

d×d positive definite symmetric matrix    Σ

Density function over Rfor Σ     ( 2π )-d/2 (det Σ )-1/2exp{-1/2 (Σ-1 (x-m), x-m ) }

Gauss distribution N ( mΣ )      distribution that has ( 2π )-d/2 (det Σ )-1/2exp{-1/2 (Σ-1 (x-m), x-m ) }

 

15 <Independent>

Set    Λ

Element of Λ     λ

Sub-family of σ additive F     Fλ

Sequence of Fλ     { Fλ}λΛ

When { Fλ}λΛ satisfies the next, it is called independent on probability P.

Arbitrary finite sequence {λ1, …, λn}

Arbitrary AiFλi  = 1, 2, …, )

P ( A1A2∩…∩An ) = AA2 ) P ( A  

 

16 <Brownian motion>

Probability space     ( ΩFP )

Family of Rd valued random variable     {Bt}t0

When {Bt}tsatisfies the next, it is called d-dimensional Brownian motion from starting position x.

(i) B0 = x at probability 1 and Bis continuous on t.

(ii) When 0 = t0t1tn, {Btk – Btk-1}n k=1 is independent.

(iii) When 0s<tbt – Bs is mean 0, Gauss distribution of covariant matrix ( t-s )I.

 

17 < F>

xRd

d-dimensional Brownian motion that starts from x     {Bt}t0

Ft is defined by the next.

Fσ (Bst )

 

18 <Markov time>

d-dimensional Brownian motion    ( {Bt}t0Px )

Fσ (Bst ) , Ft+  = ∩>0 Ft+ε

[0, ] valued random variable     τ

When τ satisfies the next, it is called Markov time on Ft+ε.

(i) t0

(ii) {ωΩ τ (ω) }Ω

 

19 <Martingale>

Martingale is defined by the next.

(i)  {Mt} is continuous at probability 1.

(ii) For every t0, Mt is Ft+-measurable.

(iii) For every t0, Mt is integrable. When ts0, E ( Mt Fs) = Ms

 

20 <Theorem>

Continuous Martingale on Ft+     {Mt}t0

{M; o} is bounded.

For bounded Markov time τ, next is brought.

EMτ = EM0

 

21 <Confirmation>

Meanings inherent in word : =  {Mt}t0

All of time inherent in word : = oT<∞

Specific time of word that has meanings : = τ  

Specific meaning of specific time : = EMτ

Confirmation of specific meaning : = (EMτEM0)

 

Tokyo June 27, 2008

Sekinan Research Field of Language

www.sekinan.org

Monday, 27 January 2025

SRFL Hills 2025 Succession Sekinan Library 1986

 

 

SRFL Hills

2025
Succession Sekinan Library 1986



Sekinan Library is a research site on language founded at Tachikawa, Tokyo in 1986, where I started language study mainly related with Chinese classical philology called "Small Study", that is the most fundamental study base of Chinese characters analysis using Chinese philosophical classics. After the deepening down this classical study, since about millennium days, I again started the mathematical study of youth's dream, aiming to research language universals inherited from Linguistic Circle of Prague in 1920s' results, being assisted by algebraic geometry as a incapable student affected by glorious Bourbaki's mathematics.  Sekinan Library greeted the 30th anniversary in 2016.

Tokyo
2017

............................................


TANAKA Akio

Tokyo
28 January 2025