For the Supposition of KARCEVSKIJ Sergej
Completion of Language
September 23, 2011
[Preparation]
1.
n dimensional complex space Cn
Open set 

Whole holomorphic function over U 

Ring sheaf for 

U →Oan(U)
Complex analytic manifold Cann
Algebraic manifold An Multinomial of Cann
Ideal of multinomial ring a  [x1, x2, ..., xn]
 [x1, x2, ..., xn]
 [x1, x2, ..., xn]
 [x1, x2, ..., xn]V(a) = {(a1, a2, ..., an)  Cn f (a1, a2, ..., an) = 0,
 Cn f (a1, a2, ..., an) = 0,  a }
 a }
 Cn f (a1, a2, ..., an) = 0,
 Cn f (a1, a2, ..., an) = 0,  a }
 a }Whole closed set of V(a) 

Fundamental open set D(f) = {(a1, a2, ..., an)  Cn | f (a1, a2, ..., an) ≠ 0}
 Cn | f (a1, a2, ..., an) ≠ 0}
 Cn | f (a1, a2, ..., an) ≠ 0}
 Cn | f (a1, a2, ..., an) ≠ 0}Arbitrary family of open set {Ui} 

Easy sheaf F 

Zariski topological space 

Ring sheaf O
Affine space An = (  , O)
 , O)
 , O)
 , O)Ring R
Set of whole maximum ideal Spm R1
Spm R Spectrum of R
<Proposition>
Spm R is Norther- like.
◊
<Proposition>
R is integral domain.
Whole of open sets without null set Ux
Quotient field K
Mapping from Ux to whole partial set of K O
O(V(a)c) =  Rf
 Rf
 Rf
 Rfc expresses complimentary set.
O is easy sheaf of ring over Spm R that is whole set K.
◊
<Definition>
R is finite generative integral domain over k.
Triple (i) (ii) (iii) is called affine algebraic variety.
(i) Set Spm R
(ii) Zariski topology
(iii) Ring's sheaf O
O is called structure sheaf of affine algebraic variety.
◊
Ring homomorphism between definite generative integral domains 


Upper is expressed by  .
 .
 .
 .Ring holomorphism OX(U) → OY((t )-1U)
 )-1U)
 )-1U)
 )-1U)Morphism from affine algebraic variety Y to X ( OX(U) → OY((t )-1U), X→Y )
 )-1U), X→Y )
 )-1U), X→Y )
 )-1U), X→Y )When  is surjection, t
 is surjection, t is isomorphism overclosed partial set defined by p= Ker
 is isomorphism overclosed partial set defined by p= Ker  .
 .
 is surjection, t
 is surjection, t is isomorphism overclosed partial set defined by p= Ker
 is isomorphism overclosed partial set defined by p= Ker  .
 .Upper is called to closed immersion.
2.
Ring holomorphism 

Morphism between affine algebraic varieties 

Kernel of  p
 p
 p
 pImage of  
 
 
 
<Definition>
It is called that when  is injection
 is injection  is dominant.
is dominant.
 is injection
 is injection  is dominant.
is dominant.◊
<Definition>
R is medium ring between S and qi's quotient field K.
When  that is given by natural injection
 that is given by natural injection  is isomorphism over open set,
 is isomorphism over open set,  is called open immersion.
 is called open immersion.
 that is given by natural injection
 that is given by natural injection  is isomorphism over open set,
 is isomorphism over open set,  is called open immersion.
 is called open immersion.◊
<Definition>
When X is algebraic variety, longitude of maximum chain is equal to transcendental dimension of function field k(X).
It is called dimension of algebraic variety X, expressed by dim X.
◊
<Definition>
Defined generative field over k K
Space ( X, Ox )added ring that is whole sets of K that has open covers {Ui} satisfies next condition is called algebraic variety.
 satisfies next condition is called algebraic variety.
 satisfies next condition is called algebraic variety.
 satisfies next condition is called algebraic variety.(i) Each Ui is affine algebraic variety that has quotient K .
(ii) For each i, j  I, intersection
 I, intersection  is open partita; set of
 is open partita; set of  .
 .
 I, intersection
 I, intersection  is open partita; set of
 is open partita; set of  .
 .◊
3.
<Definition>
Tensor product between ring and itself becomes ring by each elements products.
Elements  that defines surjective homomorphism is expressed by
 that defines surjective homomorphism is expressed by  .
 .
 that defines surjective homomorphism is expressed by
 that defines surjective homomorphism is expressed by  .
 .Image  of closed embedding defined by
 of closed embedding defined by  is called diagonal.
 is called diagonal.
 of closed embedding defined by
 of closed embedding defined by  is called diagonal.
 is called diagonal.◊
<Definition>
Field K
Ringed space that have common whole set K (A, OA) (B, OB)
Topological space C
Open embedding 

A and B have common partial set C.
Topological space glued A and B by C 

Easy sheaf over W OW
adhere, arbitrary open set Ø ≠ 


Ringed space  is called glue of A and B by C.
 is called glue of A and B by C.
 is called glue of A and B by C.
 is called glue of A and B by C.◊
<Definition>
Integral domains that have common quotient field K R, S
Element R am ≠ 0
Element S bn ≠ 0

Spm T  Spm R, Spm T
 Spm R, Spm T  Spm S
 Spm S
 Spm R, Spm T
 Spm R, Spm T  Spm S
 Spm SGlue defined by the upper is called simple.
◊
<Definition>
Affine algebraic varieties U1, U2
Common open set of U1, U2 UC
Diagonal embedding 

When the upper is closed set, glue is called separated.
◊
<Proposition>
For simple glue  , next is equivalent.
, next is equivalent.
 , next is equivalent.
, next is equivalent.(*) It is separated.
(**) Ring  is generated by R and S.
 is generated by R and S.
 is generated by R and S.
 is generated by R and S.◊
<Definition>
R and S are integral domains that have common quotient field K.
For partila ring T=RS generated by R and S, when <Definition> simple is satisfied, it is called "Spm R ad Spm S are simple glue."
◊
<Sample>
Projective space Pn is simple glue.
◊
<Definition>
Algebraic Variety's morphism is glue of affine algebraic variety's ring homomorphism image.
Algebraic direct product is direct product of affine algebraic variety.
◊
4.
Affine algebraic variety X
Ring over k R
 is called R value point of X.
 is called R value point of X.Whole  is called set of R value point of X, expressed by X(R).
 is called set of R value point of X, expressed by X(R).
 is called set of R value point of X, expressed by X(R).
 is called set of R value point of X, expressed by X(R).Ring homomorphism over k 

X(f) := X(R) X(S)
X(S)
 X(S)
X(S)Ring homomorphism  ,
, 
 ,
, 

<Definition>
 is function from ring category over k to category of set.
 is function from ring category over k to category of set.◊
<Definition>
Functors from ring category to set category F, G
Ring R
Family of  over ring R {
 over ring R { }
}
 over ring R {
 over ring R { }
}
{ }
} has functional morphism.
 has functional morphism.
 }
} has functional morphism.
 has functional morphism.Functors F,G have isomorphism ( or natural transformation).
Functor from ring's category to set's category that is isomorphic to algebraic variety, is called representable or represent by X, or fine moduli.
◊
<Definition>
Functor from ring's category to set's category F
When  satisfies the next conditions, X is called corse moduli.
 satisfies the next conditions, X is called corse moduli.
 satisfies the next conditions, X is called corse moduli.
 satisfies the next conditions, X is called corse moduli.(i) There is natural transformation  :
 :  .
 .
 :
 :  .
 .(ii) Natural transformation  ,
 ,
 ,
 ,Morphism that satisfies  is existent uniquely.
 is existent uniquely.
 is existent uniquely.
 is existent uniquely.(iii) For algebraic close field k'  k,
 k,  (k') is always bijection.
(k') is always bijection.
 k,
 k,  (k') is always bijection.
(k') is always bijection.◊
<Definition>
Algebraic variety G that  is functor to group's category is called algebraic group.
 is functor to group's category is called algebraic group.
 is functor to group's category is called algebraic group.
 is functor to group's category is called algebraic group.◊
<Definition>
Finite generative ring over k A
When G = Spm A satisfies 3 conditions on the next triad is called affine algebraic group.
Triad



Conditions
(i)  are commutative for
 are commutative for  .
.
 are commutative for
 are commutative for  .
.(ii)There is identity map for A.
(iii) There is coincident with  for A.
 for A.
 for A.
 for A.◊
5.
Projective space over C Pn
(2n+1) dimensional spherical surface  {
{ }
}
 {
{ }
}Pn has continuous surjection from  .
.
 .
.Pn is compact.
<Definition>
Map  is called closed map when
 is called closed map when  is closed set image
 is closed set image  becomes closed set.
 becomes closed set.
 is called closed map when
 is called closed map when  is closed set image
 is closed set image  becomes closed set.
 becomes closed set.◊
<Definition>
Algebraic variety X is called complete when projection  is closed map for arbitrary manifold Y.
 is closed map for arbitrary manifold Y.
 is closed map for arbitrary manifold Y.
 is closed map for arbitrary manifold Y.◊
<Definition>
Morphism from complete algebraic manifold X to separated algebraic manifold Y,  is closed map.
 is closed map.
 is closed map.
 is closed map.◊
<Proposition>
Projective space Pn is complete.
◊
<System>
Algebraic manifold that has closed embedding at Pn is complete.
This algebraic manifold is called projective algebraic manifold.
[Interpretation]
Here language is expressed by Pn.
Word is expressed by projective algebraic manifold.
Meaning of word is expressed by closed embedding.
This paper has been published by Sekinan Research Field of Language.
2011 by The Sekinan Research Field of Language
2011 by The Sekinan Research Field of Language
 
No comments:
Post a Comment